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Abstract. Solar flares are one of the key space weather phenomena
characterized by sudden and intense emissions of radiation from the Sun.
The precise and reliable prediction of these phenomena is important due
to their potential adverse effects on both space and Earth-based infras-
tructure. In this paper, we introduce a novel methodology for leverag-
ing shape-based characteristics of magnetograms of active region (AR)
patches and provide a novel capability for predicting solar flares covering
the entirety of the solar disk (AR patches spanning from -90◦ to +90◦

of solar longitude). We create three deep learning models: (i) ResNet34,
(ii) MobileNet, and (iii) MobileViT to predict ≥M-class flares and as-
sess the efficacy of these models across various ranges of solar longitude.
Given the inherent imbalance in our data, we employ augmentation tech-
niques alongside undersampling during the model training phase, while
maintaining imbalanced partitions in the testing data for realistic eval-
uation. We use a composite skill score (CSS) as our evaluation metric,
computed as the geometric mean of the True Skill Score (TSS) and the
Heidke Skill Score (HSS) to rank and compare models. The primary
contributions of this work are as follows: (i) We introduce a novel capa-
bility in solar flare prediction that allows predicting flares for each ARs
throughout the solar disk and evaluate and compare the performance,
(ii) Our candidate model (MobileNet) achieves a CSS=0.51 (TSS=0.60
and HSS=0.44), CSS=0.51 (TSS=0.59 and HSS=0.44), and CSS=0.48
(TSS=0.56 and HSS=0.40) for AR patches within ±30◦, ±60◦, ±90◦ of
solar longitude respectively. Additionally, we demonstrate the ability to
issue flare forecasts for ARs in near-limb regions (regions between ±60◦

to ±90 ◦) with a CSS=0.39 (TSS=0.48 and HSS=0.32), expanding the
scope of AR-based models for solar flare prediction. This advancement
opens new avenues for more reliable prediction of solar flares, thereby
contributing to improved forecasting capabilities.

Keywords: Solar Flares · Deep Learning · Space Weather.

1 Introduction

Solar flares are temporary events characterized by abrupt and massive eruptions
of radiation from the Sun’s surface. They are critical space weather phenomena
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with significant implications for both space-based and Earth-based infrastruc-
tures. The National Oceanic and Atmospheric Administration (NOAA) classifies
solar flares into five classes based on their peak X-ray flux levels: A, B, C, M,
and X, representing the flares from weakest to strongest [8]. Flares weaker than
A-class are typically not detected and are thus considered flare-quiet (FQ). M-
and X-class flares are the strongest and can cause near-Earth impacts, including
disruptions in electrical power grids, the aviation industry, radio and satellite
communications, and pose radiation hazards to astronauts in space. Therefore,
developing precise and reliable methods to predict solar flares is necessary to
mitigate the potential adverse effects of space weather on Earth.

Active regions (ARs) are the areas of high activity on the Sun’s surface, noted
for their intense magnetic fields concentrated within sunspots. These magnetic
fields often undergo significant distortion and instability, triggering plasma dis-
turbances and releasing energy in the form of flares and other solar phenomena
[36]. This makes ARs the regions of interest, emphasizing the importance of uti-
lizing AR-based features for predicting solar flares. However, the magnetic field
measurements, which are the dominant feature employed by AR-based meth-
ods, are susceptible to severe projection effects caused by the orientation of the
observing instrument relative to the solar surface. Therefore, as ARs approach
the solar limbs, specifically beyond ±60◦ of solar longitude, the magnetic field
readings become distorted [7], which limits the existing models to include data
pertaining to central locations only [24], [25], [26]. To address this, we derive im-
ages from original line-of-sight (LoS) magnetogram rasters of AR patches with
our novel data processing pipeline that captures the overall morphology and
spatial distribution of active regions, retaining important shape-based param-
eters such as size, directionality, sunspot borders, and polarity inversion lines
[15], [21]. We recognize the persistence of projection effects also in images of
AR magnetogram patches; however, we hypothesize that the complex feature
learning capabilities of contemporary deep learning models can potentially learn
from the shape-based features retained in images while filtering the distorted
readings. Consequently, we include data from ARs beyond ±60◦ as well, thereby
providing a novel capability to predict solar flares across the entire disk.

Furthermore, it is important to note that the tracked AR patches vary in size
depending on the size of the ARs. Existing approaches have been limited to AR
patches in central locations, often resizing rectangular patches to obtain square
images. However, this resizing distorts the original aspect ratio, consequently
altering the shapes and sizes of ARs. Alternatively, variable-sized AR patches
are cropped (using methods like center crop or random crop) to obtain square
images, resulting in information loss. In contrast, we propose and utilize a sliding
window kernel-based approach. This method select such a cropped region that
maximizes total unsigned flux (USFLUX: the sum of the absolute of the magnetic
field strength values), maintaining the original aspect ratios of AR patches and
preserving critical spatial features. By maximizing the USFLUX, we ensure that
we extract the most representative region with significant magnetic flux build
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up. This method adapts to the variability in AR patch shapes and sizes, avoiding
distortion and prioritizing the capture of more relevant information.

In this study, we develop deep learning models to predict solar flares of mag-
nitude ≥M-class by leveraging images created from cutouts (patches) of magne-
tograms corresponding to ARs. We employ these images to train three distinct
deep learning architectures: ResNet34 [9], MobileNet [12], and MobileViT [22].
Our contributions can be summarized as follows: (i) we propose a novel method-
ology for preprocessing magnetograms of AR patches, focusing on preserving
shape-based parameters while maximizing the total unsigned flux (USFLUX) [3]
at the instance level, (ii) we showcase that our models are capable of predicting
flares across the entire solar disk, including often overlooked near-limb regions,
improving the comprehensiveness of AR-based solar flare prediction models, and
(iii) through rigorous experimentation, our models demonstrate superior perfor-
mance compared to existing approaches, significantly contributing to ongoing
efforts aimed at enhancing space weather forecasting capabilities.

The remainder of this paper is organized as follows: In Sec. 2, we outline
the various approaches used in solar flare prediction along with contemporary
work using deep learning methods. In Sec. 3, we explain our data processing
pipeline, class-wise distribution of the data for binary prediction mode along with
description of our flare prediction models. In Sec. 4, we present our experimental
design, evaluations, and discuss the implications of our work, lastly, in Sec. 5,
we provide our concluding remarks and discuss avenues for future work.

2 Related Work

A range of methodologies, such as human-based prediction techniques (e.g., [4]),
statistical approaches (e.g., [18]), and numerical simulations based on physics-
based models (e.g., [17]), have been employed to predict solar flares. Recently,
the success of data-driven approaches, which leverage machine learning and deep
learning techniques, has significantly increased owing to their capacity to ex-
ploit extensive datasets [10] and their experimental achievements [23]. As solar
flares are phenomena caused by sudden, abrupt changes in the magnetic field
in the solar atmosphere, these data-driven approaches most commonly utilizes
magnetogram-based data which includes solar full-disk magnetograms (e.g., [11],
[27], [28], [29], [31]), multivariate time series (MVTS) data extracted from solar
photospheric vector magnetograms (e.g., [14], [16]), cutouts or patches of tracked
AR (e.g., [13], [20]), and features summarizing each AR patches (e.g., [1], [2]).

A deep learning model based on a multi-layer perceptron to predict solar
flares ≥C and ≥M class was presented in [23]. In this study, they used 79 manu-
ally selected features extracted from multi-modal solar observations of full solar
disk, which included vector magnetograms and extreme ultraviolet (EUV) im-
ages to predict ≥M- and ≥C-class flares. In [32], a CNN-based hybrid model to
predict the occurrence of a ≥C-class flares. Similarly, in [26], [28] we presented
a convolutional neural network (CNN) based model to predict ≥M-class flares
utilizing full-disk magnetogram images. While these full-disk models includes
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near-limb regions, by themselves they are unable to localize the relevant AR
which is likely to flare and instead issue one single forecast for entire solar disk.

In [2], a support vector machine (SVM) based model trained with 25 AR
summary parameters extracted from vector magnetograms of AR patches within
±68◦ of solar longitude (central meridian distance) was presented. Similarly, in
[16], a deep learning based time series classifier and in [14] a sliding window Time
Series Forest (TSF) was trained with a MVTS data of 24 space weather related
physical parameters primarily calculated from AR magnetograms with in ±70◦
of solar longitude. Furthermore, a CNN-based flare forecasting model trained
with AR patches (resized to 100×100 pixels) extracted from LoS magnetograms
within ±30◦ of the solar longitude to predict ≥C-, ≥M-, and ≥X-class flares
was presented in [13]. More recently, [19] proposed a CNN-based model named
“CARFFM-4” trained with AR patches (sized to 160×160 pixels) created from
R parameter [35] within ±30◦ of solar longitude to predict ≥M-class flares in
next 48 hours. It is important to note that, there is variability in literature in
terms of type of data modality which includes multiple instruments (HMI/SDO,
AIA/SDO, MDI/SOHO) and data types (EUV images, magnetograms and ex-
tracted features corresponding to AR and full-disk). Furthermore the variability
in prediction targets (≥C-, ≥M-, ≥X-class flares) and forecasting horizon (24
hours and 48 hours) is also prominent. The predictive capabilities of AR-based
models are often limited by observations taken from central locations from ±30◦

to ±70◦. The full-disk models complement the issue of longitudinal coverage in
AR-based models; however, they fail to pin-point an active region and issue a
single forecast for the entire solar disk. In this work, we introduce a limb-to-
limb AR-based flare prediction model encompassing full 180◦ (±90◦ of the solar
longitude) and evaluate our models efficacy in different longitudinal range and
provide a novel capability, to our knowledge, missing in operational systems.

3 Data and Model

(a) Original HMI SHARP Magnetogram 
Patch Size: 986 × 513 px

(b) HMI SHARP Bitmap
 High Activity Region Size: 690 × 361 px

(c) Final Processed Image
Size: 512 × 512 px

Fig. 1. An illustrative example of (a) Original raw input magnetogram of HMI AR
patch corresponding to HARP number: 4781 (NOAA AR number: 12205) at timestamp
2014-11-06T18:00:00 UTC, (b) Bitmap corresponding to HMI AR patch in (a) showing
the region of interest indicated by white pixels, (c) Final processed image of AR patch
in (a) now sized to 512×512, that is used to train our models.
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The raw input data in our work includes LoS magnetograms of ARs pro-
vided by the Helioseismic and Magnetic Imager (HMI) [34] onboard the Solar
Dynamics Observatory (SDO) [33], which are publicly available as a data prod-
uct named Space-Weather HMI Active Region Patches (SHARP) [3] from the
Joint Science Operations Center1. In this work, we utilized magnetograms span-
ning from May 2010 to 2018, sampling magnetograms at a cadence of one hour.
The magnetograms of AR patches contain rasters of magnetic field strength val-
ues typically ranging from ∼±4500 G. An example of magnetogram of AR patch
is shown in Fig. 1(a). Along with magnetograms, we use bitmaps (another data
product from the SHARP series) which define the region with pixels located
within or outside the ARs, providing the region of interest within the AR patch
as shown in Fig. 1 (b). The bitmap are equal in size to the LoS magnetograms
of AR patches and contains five unique pixel values: 0, 1, 2, 33, 34, where the
values 33 and 34 indicate the pixels that are within the AR region and hence
our region of interest [3]. For each AR patch, we assign a binary label using peak
X-ray flux converted to NOAA flare classes such that: (i) ≥M indicates Flare
(FL) signifying the existence of a relatively strong flaring activity, and (ii) <M
indicates No Flare (NF) with a prediction window of 24 hours. To elaborate,
from the timestamp of an AR patch to the next 24 hours, if the maximum flare
class is <M, then we label the AR patch as NF; otherwise, FL.

In our data processing pipeline, which is illustrated in Fig. 2, we begin by
collecting hourly instances of original raw input magnetograms of active region
(AR) patches, alongside their corresponding bitmaps. Our initial step involves
applying the bitmap as a filter to precisely crop the AR patches, isolating the
regions with high activity. Subsequently, we implement a size filter: if the result-
ing cropped AR patches are smaller than 70 pixels in width, we exclude them
from our dataset. It is worth noting that we determine this threshold based on
the overall data distribution, ensuring retention of all instances corresponding to
‘FL’ instances while removing those from the ‘NF’ class. Following this filtering
stage, we proceed to adjust the magnetic flux. We cap the flux values at ±256G,
and any flux values within ±25G are set to 0 to mitigate noise. Ensuring uni-
formity in size, we apply zero-padding to patches smaller than 512×512 pixels.
Conversely, for larger patches, exceeding 512×512 pixels, we employ a 512×512
kernel to select the patch with the maximum total unsigned flux (namely US-
FLUX, which is the sum of the absolute value of magnetic field strength rep-
resented as raster values in magnetograms). By doing this, we aim to minimize
information loss by picking a spatial window where the total flux is the highest,
which is more likely to include the regions of interest. Finally, to standardize the
representation, all patches are scaled to fit within the range of 0-255, facilitating
the generation of images. An example of final preprocessed image utilizing the
magnetogram raster in Fig. 1 (a) and bitmap in Fig. 1 (b) is shown in Fig. 1 (c).

The overall distribution of our binary-labeled AR patches data, with flare
classes NF (comprising flare-quiet (FQ), A-, B-, and C-class flares) and FL (in-
cluding M- and X-class flares), is depicted in Fig. 3(a). In total, we have 501,106

1 http://jsoc.stanford.edu
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HMI/SDO SHARP
Magnetograms

HMI/SDO SHARP
Bitmaps

Bitmap Filtering

Clamping
Magnetic Flux

(-256G to +255G)

Noise Removal
(-25G to +25G)

AR
Patch
SizeCropped

Patch 
Size < 70px 
(in width)

Removed From
Dataset

=512 × 512 px

<512 × 512 px

>512 × 512 px

Run a Kernel
512 × 512 px 

Find Optimal
Patch and Crop

argmax USFLUXkernel
USFLUXactual 

Optimal Patch

ML Ready
Labeled Dataset

Scaling (0-255)
(JPEGS)

Zero Padding
(512 × 512 px)

Resizing Not
 Required

NOAA/GOES
 Flare Catalog

IS 
AR Patch

 a  "FL" Class
 Instance?

HARP number to NOAA AR number Mappings

Polarity Inversion Vertical Flipping

Horizontal Flipping Gaussian Blurring

Add Noise (+25G)

NO

YES

FL 
without 

Augmentations

Augmentations

Augmentations

NOAA AR number  to GOES flare class Mappings

Fig. 2. The process flow diagram of data processing pipeline used in this work. It
shows a sequential pipeline for creating JPEG images from magnetogram rasters and
corresponding bitmaps along with data augmentation pipeline given the label for the
magnetogram patch. Boxes colored in green collectively defines our entire dataset.

instances belonging to the NF class and 10,315 instances belonging to the FL
class, resulting in a class imbalance ratio of ∼ 1:49. We split our entire dataset
using temporally non-overlapping tri-monthly partitioning into four partitions
based on the onset timestamp of HARP series. To elaborate, we ensure that the
data corresponding to an entire AR trajectory is included in only one partition
to prevent double-dipping by using the onset timestamp of the HARP series
for tri-monthly partitioning, in contrast to using the observation timestamp of
magnetograms as mentioned in [24]. The resulting data distribution is shown
in Fig. 3 (b), where we use Partitions 1 and 2 as our training set while Parti-
tions 3 and 4 as validation and test set respectively. The data augmentation and
undersampling of training set is later described in Sec. 4.1.

The task of solar flare prediction in this work is formalized as a binary image
classification problem; therefore, we select three general-purpose deep learning
models: (i) ResNet34 [9], (ii) MobileNet [12], and (iii) MobileViT [22]. Recently,
attention-based models, notably Vision Transformers (ViTs) [6], have emerged
as frontrunners in the task of image classification. They have showcased su-
perior performance on large-scale datasets compared to standard CNNs. How-
ever, ViTs typically boast a high number of trainable parameters (ranging from
approximately 86 to 632 million), making them demanding in terms of com-
putational resources. This limits their practicality in scenarios with restricted
computational capabilities or smaller datasets. In response to these challenges,
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Fig. 3. (a)Overall data distribution (b) Overall data partitioned into four tri-monthly
partitions. Note: The height of the bars are in log scale.

particularly in our context with a modest dataset, we explore alternative models
that strike a balance between accuracy and efficiency. Our focus lies in selecting
lightweight architectures that can deliver competitive performance while being
more resource-efficient. ResNet34 [9] and MobileNet [12] are standard CNNs
with ∼21.2 and ∼4.2 million trainable parameters, respectively, while Mobile-
ViT boasts ∼2 million trainable parameters. ResNet34 excels in capturing fine-
grained details within images, potentially aiding in identifying subtle patterns
indicative of solar flares. MobileNet, renowned for its efficiency, offers a balance
between computational resources and accuracy, making it suitable for deploy-
ment in resource-limited environments such as space-based solar observation
platforms. Additionally, MobileViT [22], a variant of the Vision Transformer [6]
inspired by MobileNet is optimized for computational efficiency, leveraging both
efficiency and global context capturing capabilities, potentially enhancing the
models’ performance in capturing complex patterns relevant to solar flare pre-
diction. This selection of models aims to evaluate their efficacy for solar flare
prediction while prioritizing lightweight architectures with varying designs.

4 Experimental Evaluation

4.1 Experimental Settings

As mentioned earlier in Sec. 3, we follow time-segmented tri-monthly partitioning
scheme to create four partitions of our entire dataset. Partition-1 and 2 com-
bined are used as the training set. However, due to significant class imbalance in
our dataset, we used undersampling together with data augmentation to create
a balanced training set. Firstly, we augmented data instances belonging to the
FL-class in our training set using five data augmentation techniques: (i) polarity
inversion, which swaps the signs of positive polarity to negative and vice versa
as shown in Fig. 4 (b), (ii) Gaussian filtering, which applies a Gaussian blur
to the image to reduce noise and detail (Fig. 4 (c)), (iii) Horizontal Flipping,
which involves flipping the image along a vertical axis (Fig. 4 (d)), (iv) Vertical
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(a) Original (Preprocessed) (b) Polarity Inversion (c) Gaussian Blurring

(d) Horizontal Flipping (e) Vertical Flipping (f) Add Noise (+25G)

Fig. 4. An illustrative example of (a) input magnetogram of HMI AR patch corre-
sponding to HARP number: 4781 (NOAA AR number: 12205) at timestamp 2014-11-
06T18:00:00 UTC, (b-f) five different augmentations applied to AR patch in (a).

Partition1 & 2 Undersampled Augmented (Train Set) Validation set Test Set
101
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246,169

29,034 29,034

125,072 129,865

4,839 4,839

29,034

2,378 3,098

NF FL

Fig. 5. Overall data partitioned into train set (showing original, undersampled and
augmented data counts) , validation set, and test set used in this study.

Flipping , which involves flipping the image along a horizontal axis (Fig. 4 (e)),
and (v) Adding random noise within ±25G (Fig. 4 (f)). To balance the FL-Class
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instances with NF, we undersampled our training data by randomly selecting
30% of instances belonging to A-, B-, C-class flares each, and ∼8% of instances
from FQ from both Partition-1 and 2. For realistic evaluation, we maintained the
original imbalanced distribution in Partitions 3 and 4, which are our validation
and test sets respectively, as shown in Fig. 5.

Model Parameters: In our model hyperparameter selection process, we de-
fine the hyperparameter space, encompassing initial learning rate sets, weight
decay sets, batch size sets, and class weight sets as shown in Table 1. We also
investigate three sets of class weights, although the training data was balanced,
aiming to assess their impact on minimizing false positives. These class weight
configurations are indicated as NF:FL, where 1:1 would suggest equal weights in
loss minimization. To prioritize the minimization of false positives, we explored
increasing the weights for NF-class instances. Following the definition of our
hyperparameter space, we conduct a meticulous grid search across this space,
evaluating on the validation set for all three models. During this search, we train
our models using stochastic gradient descent (SGD) with cross-entropy loss. Ad-
ditionally, we employ a dynamic learning rate strategy, which reduced the initial
learning rate by a factor of 10 every 10 epochs. Upon completing the grid search
and evaluating the models, we identified the optimal hyperparameters as shown
in Table 1. These parameters exhibited superior performance, we use these to
train our final models for 50 epochs and evaluate on the test set.

Table 1. Hyperparameters search space with optimal hyperparamters for each model.

Optimal Parameters
Hyperparameters Search Space ResNet34 MobileNet MobileViT

Learning Rate {0.00001 to 0.01} 0.001 0.001 0.001
Weight Decay {0.00001 to 0.01} 0.01 0.01 0.001

Batch Size {48, 64} 48 48 48
Class Weights {1:1, 3:1, 5:1} 5:1 5:1 5:1

Evaluation Metrics: True Skill Statistic (TSS, in Eq. 1) and Heidke Skill
Score (HSS, in Eq. 2), derived from the four elements of confusion matrix: TP,
TN, FP, FN are the two forecast skills scores widely used in evaluating flare
prediction models.

TSS =
TP

TP + FN
− FP

FP + TN
(1)

HSS = 2× TP × TN − FN × FP

((P × (FN + TN) + (TP + FP )×N))
(2)

where, N = TN + FP and P = TP + FN .
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TSS and HSS values range from -1 to 1, where 1 indicates all correct pre-
dictions, -1 represents all incorrect predictions (also, it means that all inverse
predictions are correct, i.e., there is a skill), and 0 represents no skill. In contrast
to TSS, HSS is an imbalance-aware metric that is commonly employed in solar
flare prediction models due to the prevalent high class-imbalance ratios. How-
ever, choosing a candidate model based on two skill scores becomes difficult,
as it demands preference of one metric over another at the end. Therefore, by
combining TSS and HSS in a geometric mean as in the Composite Skill Score
(CSS, in Eq. 3), we obtain a single metric that balances between discrimination
ability and imbalance awareness.

CSS =

{
0 if TSS ×HSS < 0√
TSS ×HSS otherwise. (3)

CSS considers both the discrimination power of the model (TSS) and its
ability to outperform random chance (HSS), offering a more comprehensive eval-
uation. It provides a single metric where the values range from 0 to 1, with 1
indicating perfect skill. CSS accounts for both aspects of model performance,
making it more suitable for assessing forecast models, particularly in scenarios
with class imbalance. Therefore, we evaluate and compare our models based on
the single metric, CSS, but we also report both TSS and HSS for completeness.

4.2 Evaluation

As explained earlier in Sec. 4.1, we conducted experiments to predict solar flares
in a binary setting (≥M-class flares) using a "train-validation-test split" of our
entire dataset, which consists of magnetogram of AR patches covering a solar
longitudinal range of ±90◦ (i.e., the entire solar disk). We utilized the validation
set to monitor the models’ performance every epoch and tuned hyperparameters
to optimize the CSS. After training the model with optimal hyperparameters,
we employed a threshold tuning approach to calibrate our models by tuning the
prediction score thresholds. This involved evaluating the performance of each
model on the validation set at different threshold values ranging from 0.01 to
0.99 with an increment of 0.01. We selected the threshold that optimized CSS
for each model, resulting in thresholds of 0.36, 0.46, and 0.35 for the ResNet34,
MobileNet, and MobileViT models respectively. These thresholds were then ap-
plied to the test set for each model, and the models’ performance was reported.
Additionally, we assessed the performance of all three models on subsets of data
representing different longitudinal coverage (within ±30◦, ±45◦, ±60◦, ±75◦,
and ±90◦ of solar longitude), with ±90◦ indicating the entire test set. The per-
formance of our models relative to each other in terms of TSS, HSS, and CSS is
illustrated in Fig. 6 (a), (b), and (c) respectively.

We observed that, the TSS for MobileViT was higher, while HSS was con-
sistently lower compared to other two models, which empirically highlights our
hypotheses of using a composite skill score, as choosing the model based on TSS
scores might lead to a false sense of good performance. Therefore based on CSS
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Fig. 6. Performance of our models on test set in terms of (a) TSS, (b) HSS, (c) CSS.

score, we observed that the overall performance corresponding to entire test set
(±90◦), MobileNet, achieved the best performance with CSS=0.48, (TSS=0.56,
HSS=0.40) while the lowest CSS was observed with MobileViT with CSS=0.44
(TSS=0.56, HSS=0.34). Furthermore, our analysis revealed a linearly decreasing
trend in model performance with increasing longitudinal coverage of ARs.

We conducted a comprehensive comparison of our models’ performance against
existing literature within the longitudinal coverage of their experiments as pre-
sented in Table. 2, focusing on CSS while reporting both the TSS, and HSS met-
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Table 2. Comparison with existing literature in terms of TSS, HSS, and CSS with in
specific longitudinal coverage.

Longitudinal Coverage Models TSS HSS CSS

Huang et al., 2018 [13] 0.66 0.14 0.31

Li et al., 2023 [19] 0.45 0.44 0.44

Within ±30◦ ResNet34 (This Work) 0.60 0.45 0.52
MobileNet (This Work) 0.60 0.44 0.51

MobileViT (This Work) 0.72 0.31 0.47

Bloomfield et al., 2012 [1] 0.54 0.19 0.32

Bobra et al., 2015 [2] (±68◦) 0.76 0.51 0.62
Ji et al., 2022 [16] (±70◦) 0.81 0.22 0.42

Ji et al., 2023 [14] (±70◦) 0.81 0.43 0.59

Within ±60◦ ResNet34 (This Work) 0.58 0.43 0.50

MobileNet (This Work) 0.59 0.44 0.51

MobileViT (This Work) 0.64 0.34 0.47

Nishizuka et al., 2018 [23] 0.80 0.26 0.45

Within ±90◦ ResNet34 (This Work) 0.58 0.38 0.47

MobileNet (This Work) 0.56 0.40 0.48
MobileViT (This Work) 0.56 0.34 0.44

rics as well2. Notably, the superior scores are highlighted in bold. Our analysis
revealed that all three of our models exhibited superior performance compared to
both [13] and [19]. Specifically, ResNet34 surpassed [13] and [19] by 21% and 8%
in CSS, respectively, within the ±30◦ range. Similarly, in comparison to models
evaluated within ±60◦, our model (MobileNet) outperformed [1] by 19%. While
we show the best performance by CSS in bold for [2], it is important to note
the challenges in making precise comparisons due to the varying longitudinal
ranges covered in studies by [2], [16], [14] (spanning ±68◦, ±70◦, and ±70◦, re-
spectively). Despite these differences, our findings underscore the effectiveness
of our approach within the established longitudinal boundaries.

Furthermore, on evaluating with in ±90◦, notably, the MobileNet model
demonstrated the best results, outperforming [23] by 3% in CSS. Finally, we
emphasize that although there are full-disk models which covers entire solar disk
(±90◦), as mentioned in Sec.2, they are not directly comparable to AR- based
models [30], therefore, we exclude full-disk models from comparison. Overall,
our study presents a pioneering approach by developing AR-based models that
2 It should be noted that the comparisons against the existing literature might not be

accurate due to differences in datasets and partitions used across these studies, as
already mentioned in Sec. 2. However, they are intended to provide general insights
into the standings reported in other studies discussed in this paper.
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incorporate AR patches spanning the entire solar disk, a methodology never
before explored in solar flare prediction. Our comprehensive evaluation demon-
strates the superiority of our models over existing ones within their respective
longitudinal coverage. This highlights the effectiveness of our novel approach in
advancing the solar flare prediction. To reproduce this work, the source code and
experimental results can be accessed from our open source repository [5].

4.3 Discussion

Zone 1 (0° to ±30°) Zone 2 (±30° to ±60°) Zone 3 (±60° to ±90°)
 Solar Longitude (Magnetic flux-weighted centroid)
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Fig. 7. Models’ efficacy evaluated on three different Zones in terms of CSS. Zone 1 and
2 indicates central locations and Zone 3 represents near-limb location.

Upon recognizing a pattern indicating a decline in model performance with
increasing longitudinal coverage, we investigated the effectiveness of our mod-
els on non-overlapping regions of solar longitudes. To facilitate this analysis, we
delineated three zones: Zone 1 representing the region within ±30◦, Zone 2 cov-
ering the area between ±30◦ to ±60◦, and Zone 3 spanning ±60◦ to ±90◦. To
evaluate the models’ performance across these zones, we computed the CSS and
observed a clear decrease in model skill towards the limb, as illustrated in Fig. 7
from all three models. It is worth noting that while existing models are typically
designed to predict solar flares up to Zone 2, our model demonstrates capability
in the near-limb regions, which includes Zone 3. Despite lower skill scores com-
pared to those in the central region, this study unveils a novel capability that
shows skills on the near-limb region, thereby advancing solar flare prediction.
This achievement underscores the significance of our research in enhancing our
understanding and predictive capabilities in solar phenomena.

5 Conclusion and Future Work

In this study, we introduced three limb-to-limb (i.e., ±90◦) flare prediction mod-
els to forecast solar flares of magnitude ≥M-class, which are trained with images
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created from LoS magnetic field component of AR patches. The primary focus
of our work was to demonstrate the predictive capacity of AR-based models in
near-limb regions (beyond ±60◦). On evaluating this novel limb-to-limb model
capabilities, the results show that we can satisfactorily predict the flaring activity
in the existence of severe projection effects although there is room for improve-
ment (the skill is limited when compared to central locations). Furthermore, the
results also support our hypothesis that shape-based features derived from mag-
netograms are effective when predicting solar flares even when the ARs are close
to limbs. Moreover, we also introduced a novel preprocessing pipeline for image
transformation of magnetic field data products. This pipeline is remarkable for
deep learning-based flare forecasting tools and it provides a systematic workflow
for clamping, padding, thresholding and most-relevant window selection; which
is critical considering the significant class imbalance in forecasting tasks. Finally,
we also introduced a new evaluation metric CSS, which is also important and
presents us with a practical index for model comparison and selection. While full-
disk models are developed to complement AR-based models in near-limb regions,
they lack the ability to localize AR-specific predictions. We define this work as
a pioneering step towards fully integrating ARs into solar flare prediction, with
significant implications for advancing such predictions. Numerous avenues for
future exploration exist, including investigating multimodal solar observations,
developing spatiotemporal models, and incorporating explanatory/ interpreta-
tive frameworks into the model to enhance reliability.

Ethical Statement: Space weather forecasting research involves several eth-
ical considerations. The data for solar flare prediction, provided publicly by
NASA/SDO and the AIA, EVE, and HMI science teams, is free from data pri-
vacy and security concerns. Non-commercial use of SDO images for education
and public information is encouraged without needing authorization. Ethical
and responsible development and use of forecasting models are crucial to pre-
vent biases or negative impacts. These models, despite their advanced capabili-
ties, have limitations due to the rarity of extreme solar events and the methods
used to evaluate them. Caution and multiple information sources are essential in
decision-making related to space weather events. Transparency about these mod-
els’ limitations ensures ethical and responsible use, mitigating potential harm.
Finally, space weather forecasting should be used for peaceful purposes, such as
early detection and reducing vulnerabilities to extreme space weather events.
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